THE COCHIN COLLEGE

COCHIN, KERALA - 682002

PHYSICS / ELECTRONICS

COURSE CODE: PH810404

Do Take Nother	with Reg. No:	Work done by:SREELEKHA.T.S	Certified that this is a bonafide Record of Practical	Uni.Reg. No.: 220011015177	Class No:	Name: SREELEKHA.T.S	

Examiners:

-

2. Athere Prakselle Course

TEACHER-IN-CHARGE

rs:

Submitted for the University Examination of

INDEX
Name of Experiments

THE COURSE CALLERY

COCHO, WILLIAM STRUCK

			Clining.	riollan	rissain	The state of	e Thirty	erde	rests	eset.	-		ec ages	60.00	9,196	•							SARA SARA	Calable			g-Rein
	-		12	-		=			10		6	1	8	4		6	GI		540	4		W		2		1	No.
			14/5/24			18/5/24			10/5/2024		9/5/2024		8/5/2024	7 5 2024		15/3/2024	8/2/2024			6/2/2024		6/2/2024		5 2 2 2 0 2 4		10/11/2023	Date
	DIFFERENT GAUGES	SS	LASER DIFFRACTION - COMPARISON	SPECTRA.	TRANSITION FRON ABSORBTION	BAND GAP AND TYPE OF OPTICAL	STRAIN.	CRYSTALLITE SIZE AND LATICE	XRD - DETERMINATION OF	MEAGURENENTS.	XRD - LATTICE PARAMETER -	DETERMINATION.	XRD-CRYSTAL STRUCTURE -	BAND GAP - SEMICONDUCTOR DIGDE	ROTATION MEASUREMENT.	OPTICAL ACTIVITY - SPECIFIC	MALUS LAW - YERLFI CATION .	WEDGE.	OF THIN SHEETS BY AIR	COMPARISON OF THICKNESS	STATIC AND DYNAMIC METHOD	SPRING CONSTANT -	- STRAIN GAUGE.	YOUNG'S MODULUS	FILL FACIOR.	SOLAR CELL-EFFICIENCY AND	Name of Experiments
			58			8.1			##		41		38	32		28	24			19		13		-11		2	Page No
The Contract of	1 Con 12		3007		7	12.50 F		1141/1	12 12 12 A	127	13 A 124	J241"4	18/1/21 MM	22/2	- FOILS		3/2/2			Jun 5/7/24		22/c/5 trig	C	17/1/2 mg	- C	JENY 5/7/24	Remarks

ALIGUARE STRUCTURE TORRES PRETEREN

Watergrand of the State of the

2-7, AHX3-3736

SHEET FIRE INDIVIS

CHANGE BOTT NATIONAL

我并是如此一日日七十二十二

SALVE SALVE TO SEE THE SALVE TO SALVE THE SALVE SALVE

The party of the second of the

to proceed and within a second without a solution.

CTTS ACTIVATE DATE TO BE

ESCHARGE OF THE

LA REBERT LAND IN TO BE SERVED AND A PARTICULAR OF THE PARTICULAR

152300000000

Distance between	solor cell and ligh	light source = 36.5 cm
Load resistance RL (v.)	vollage	I (m A) MIA
0	0 200	2.45
100	0.15	2.47
200	0.50	2.46
300	0.76	APSUNUTUS SUCCULRED
400	101	-
500	10 Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	2.47
600	1.173	2:47
800	1.172	a 2.44
1000	1.173	2.45 V9.03//
2000	1.186	١.
3000	51 1-21 no was	0.21.57
4000	1.22	1.22
5000	1-24	1.00
6000	1.26	178:0
₹000	1.27	0.73
8000	1.28	0.64
9000	1.29	69.0
10,000	1	0.52
20,000	1.32	0.26
明 等一件之		
3	1.38	77.77

autput the sun have the are using a H. where I is the EPHICIENTY Ephiciency of FILL BULLBOY switace pen second. Innadiance, I = general, Ethicency of = Vm Im from the solar cell to the input energy from Paul = Pmax = Vm x Im Pin = I Ac where d-distance between light source and 3 1 P -FF = VmxIm A = LIT de Pin power in watts Anea of the sphere Pout incident innadiationne VOCKISC projected * solar cul = Psounce 80 IAC out from the sun. grevery P which of the indandesunt lamp. Psounce 4ND2 On which the enwigh square metre of is the amount light.

From graph

Tsc = 2.45mA

 $fill + actor = VmpImp = \frac{1.12 \times 2.0 \times 10^3}{VacTsc} \times 1.38 \times 2.45 \times 10^3$ Imp = 2.0 m A $V_{DC} = 1.38V$ $V_{mp} = 1.12V$

The All factor for silicon devices may vary from

Envior percentage in All factor = 0.70 - 0.6625 x100 = 5.3 %

 $m = \frac{Pout}{Pin} = \frac{VmpImp}{EAC}$, $Ac = 30xiq^4 m^2$. $E = \frac{p_{\text{source}}}{4\pi d^2}$, d = 36.5 cm,

we are using 100% incandacent lamp, among this only of 18,00%. The electrical energy is converted into light, and 94-98% is lost as heat. Assume 6% of lamps power 18 converted to visible light.

Prounce = 6W

4x3,14x (36 6x102)2 = 3.58 W/m2

and milliammeter reading
Im Note the voltmeter reading for
curve and note the values of
maxim a recharde having maximum area undul
= - Determining the factor and employing
current along re only.
1
between Outpu
every time.
and note down the
load resistance using a rest
ation of vollage an
shou
In suc
he distance between
solar cell.
3- switch and the lamp to expose the light on
00 0
range to 2.5 m A and cload resistance RL to
2- select the voltmeter vange to 24, carrient meter
circuit as shown in the sigure through patch
to each other on a wooden plank connect the
1 - place the solar cell and the light source apposite
(igowi)
PROCEDURE

 $\eta = \frac{1.12 \times 2 \times 10^{-3}}{3.58 \times 50 \times 10^{-4}} = \frac{0.00224}{0.01034} = \frac{0.208 \times 0.203}{0.01034}$

maximum efficiency of practically used solar cells is about 0.2 (20%)

Events percentage in efficiency, $r = \frac{0.208 - 0.2}{0.2} \times 100$

1,4 =

Description of the frequency is

Department of Physics, The Codin College - 65,0002

RESULT

V-I Characteristics of solarcell platted

V-I characteristics of solarcell platted

Solarcell fill factor, her = 66.25%

Ideal value = 70% to 82%

Fanon pertantage = 5.3%

Tideal Value = 20%

Envan pertantage = 4%

Envan pertantage = 4%

Envan pertantage = 4%

Envan pertantage = 4%

that is mounted on a backing maternal, which be adhered to the surface of the patient to measured when the abject deferms due to	thin , electrically	Cattle in a dayler was	an alumnum canhlever Atted with etrain elated with etrain	APPARATUS REGUIRED	To determine the Young's modulus of a	AIM THE THE THE TOTAL THE TOTAL THE	YOUNG'S MODULUS-STRAIN GAL	EXPERIMENT 2 - Instributed has
abject being due to an	object: 16	1 1 1	dauge soreg		cantilever using	(19,48) (1,11,11)	GAUGE	DATE - 5/2/2024

and parthonal to the

strain experienced

4

节

measured.

and.

deferme as well,

ad UID.

ex priessed

W1/30

71

nesistance of

a conducting

smain gauge

Pollowing equation.

observation and culculations

EXAMENDED D

	At !
	X = 0
	B
Comments of the	m-01xp=
-	O.

Young's n	250	200	150	55	(b)	weight
nodul	0.54	0.36	0.18	0.09	(g) x103 V	Imial 1
a_{100} a_{1	0.54	0.36	0.18	0.09	0 0 V	Tinial 2
$\frac{1}{1000} = \frac{3 \text{ mg x}}{6.367 \text{ mg x}} = \frac{1}{1000}$ $\frac{1}{1000} = \frac{3 \text{ mg x}}{8.67 \text{ mg x}} = \frac{1}{1000}$ $\frac{1}{1000} = \frac{3 \text{ mg x}}{8.67 \text{ mg x}} = \frac{1}{1000}$ $\frac{1}{1000} = \frac{3 \text{ mg x}}{8.67 \text{ mg x}} = \frac{1}{1000}$	0.45	0.36	0.18 81.0	0.09		Imad 3
mgxno mode mgxno mgxno mode mgxno mode mode mgxno mode mgxno mode mgxno	115.0	0.36	0.18	0.09	400 19 3 00184 1/1130	Average
3 mg x 10 mean m/c = 3 mg x 10 mg	97.29 116.75	77.83	38.41	19.46 94.61	O 3//	E = No
mean $m/c = 2.57 \times 10^6 g$ The state of th	2.5井	266年3月1	38.91 2.57 58.37 2.57	9.46 2.57 03910978 2UTH9/1997	opina districts	m/e 1/11/A
	1 3					

Mhere material IF Is expressed as: to the mechanical singin experienced by the singin gauge 19 known as the make of the relative change in electrical resistance BY MOST mene, strain (E) detected by the calculated Pacter (OIF): 1 GHF = DR/R A - 18 The - Length of the wine AR - The change in resistance due R - amainal resistance e - Statin experienced by the strain gauge. is the is the electrical resistivity of the material of the wine and construction of the strain gauge. around 2, but it can metallic from the (W) resistance of the GIF. VOY 6 (mass-sectional area of the wine Strain gauges, the gauge factor is output voltage using gauge gauge faction Cif. Mathematically strain gauge strain gauge あ Stoolin can be (0) \otimes on the

gauge is deformed due to mechanical stress. The basic wheatstone bridge configuration is shown of 4 resistances used to measure unknown electrical restrances by wheatstone bridge to measure the small chan and it included. In electrical resistance that occur when the strain Where balancing - one resister representing the strain gauge (Ry) Two known resistance (R1 and R2) one variable register (Rs) Vo- output vollage from the strain gauge.

Vex- excitation vollage applied to the wheattone A wheat stone bridge is an electrical circuit istances arranged in a diamond shape. bridge. chanacs

Mean value of y = [6.36 + x10"] + [6.756 x10"] = 6.562 x10" dyny = 6.756×10 dyne/cm2 = 6.756×10 0 N/m2 The bridge is excited by an input voltage vex, Resistance (Ry) belome Resistance (Ry) changes. This causes the bridge to a midpoints of the unbalanced, resulting in a non-zero output is proportional to the change in resistance of the strain gauge, change in resistance changes. This bridge. Strain measured between

ex pe non a u

= 3 x 986 x 9 x 2 7 17 x 10 b

8.67 (0.2)2

young's	300	250	200	150	100	50	0	weight (9)	At
oung's modulus	0.60	0.50	0.40	0.30	0.21	11.0	0	Tmiad 1	At 1=10.2cm
Odulus (0.60	0.50	0.40	0.30	0.21	11.0	0	Tmal 2	2CM
mean m/E = \frac{3 mg \chi}{6 t^2 \in E} = \frac{3 \times 990 \times 10.2}{2.67 \left(0.20)^2} \times 2.257 \times 1 = \frac{6.337 \times 10^1}{2.67 \left(0.20)^2} \dunu/cm^2	0.60	0.50	0.40	0.30	0,21	0.11	0	Total 3	
Young's moduly. $y = \frac{3 \text{ mgr}}{6 \text{ k}^2 \text{ E}}$ Mean r $= \frac{3 \times 900 \times 10.2}{2.67 (0.20)^2} \times 2.257$	0.60	0-50	1	0.30	0.21	11.0	0	Averagano	
an n	129.72	108.108	84.48	64.86	45·40	23.48	0	×10-6	
10° = 3.057x11x	2.3	2.31	2.8	2.31	2.20	2.102		m/c (9)	

by combining the equal of the e	where, F - Applied load. (for a - Distance between gening to the the the through the the	For a cantileven beam 11's frame and, the stocks o = 6 F x bt ²	The young's modulus (: ss of a material.it is strain(E) y = o E	ie. E = Vo Or.vex
modulus For op-Nea	Ince) The point Canloe Of Canhlever Canhlever Canhlever	Rubjecked to a	(y) is a measure s defined as the	6
storess and strain can be determined	e paint at which force loc of strain gauge ntileven beam cantileven beam.	load F at	e ratio of	3

and reducing the factor to in to The young's most haraldness to enturbon shower and 2- IMP PROCEDURE - Set up the The breadth and thickness of the armangement, frung one end arrangement includes a strain vallage indicator Strict bending q - Acceleration due to gravity th - mass of the load excitation voltage Vex and gauge tailor given on the when of group gauge is measured Cantilever beam Strain gauge is noted Text bust devination the lateriality multip, undirectly how in the Secusely. The E loading Cantilever

The value of young's modulus,

At x = q cm, $y = 6.562 \times 10^{11} \text{ dyny/cm}^2$

At 12=10.2cm,

y = 6.638x10 dyne/cm2:

mean y = [6.562×10"] +[6.538×10"]

= 6.55 x10" dynus/0m

The standard value of young's modulus of Aluminium

 $y = 690 \text{ ppa} = 6.9 \times 10^{11} \text{ dynu/cm}^2$ The error percentage = $[6.9 \times 10^{11}] - [6.55 \times 10^{11}] \times 100$

Y = 6.55x10" dynu/cm2/

Department of Physics, The Cochin College - 682002

using equation (+), calculate the ratio between each applied load and output voltage so, for each applied load, Paicher and excitation voltage by from the Strain gauge.

Y=3mgn

9- The experiment is repealed for different x alculate the young's modulus of

and E, where

in (a) for a lemment of the solid and (b) in (a) in (b) in (c) in

the young's modulus of Aluminum cantileven,

200
librium case and laws of periodic n
ntants I land of motion is used
of the spring constant. Ir
different techniai
th in static as well as
in Newton/m
from one spring to
as the force per unit length (
e spring constant k of an ideal
spring is an elastic object which stores mechanical
THEORY AS COMMONDATIONS AS THE SECOND STATE OF STREET
metre scale and stop watch.
and attached to a gland glatted
APPARATUS REQUIRED
6) Dungmio mothad.
Static mothed
A STATE OF THE STA
the face constant of a
- SIAILL AND DYNAMIC METHOD
SPRING CONSTANT
CALENIL 2 812 12 02 1

spring and it's extension of spring constant. Spring and it's extension of spring constant. After amounts one by one After ing will attain a stationary the action upward and force inward force. The aestering fearce. The regative sign of that is the regative sign of that is the partice that shape of the stant is the original shape of the stant original shape or the stant original shape or the stant original shape or the stant or the stant original shape or the stant or the stant original shape or the stant original shape or the stant original shape or the stant or the stant or the stant original shape or the stant or the st
--

Evan, because $\frac{1}{2}$ and $\frac{1}{2}$ and

where, m - Mass g - Act ks - Sp x - Dis ms, which adds
phace phace
load due to de the load
polical pring sta
Hic condition from 11's equilibricass, denoted by m in equation
-

DYNAMIC METHOD

一日 ニートン

These fone the time period of the

Oscillation of the

0

OBSERVATION AND CALCULATION

20 16		4	1.57	11107		
184.32	0.645	0.8030	16.05	16.27	15.82	3000+14.6
165:28	0.60	0.7635	15,27	15,25	15.29	2500+14.6
172.72	94.0	0.6775	13.55	13.23	13.88	2000+14.6
178.14	0.345	0.5870	11.74	11.72	11.45	1500+14.6
196.14	0.204	0.4525	9.05	9.26	8.84	9.4110001
176.47	0,115	0.3395	6.79	1.97	6.61	6.41+009
N/m	Si	(8)	(3)	(s)	(5)	XIO Ka
72	to - 4000 H	300	t	2	_	m+Md
M=1/4 (WHA	T2	T=1/20	Average T=450	Time for 20 Oscillations	Time for :	Load

Mean Kd = 176.47+196.14+178.14+172.72+165.28+184.32

6

W/N 10.8 El =

(s) Dipunite method

 $\frac{dm}{d1^2} = \frac{1}{0.228} = 4.385$

 $kd = 4\pi^2 dm = 4x(3.14)^2 \times 4.385 = 1.172.93 \text{ N/m}$

- Attach a

stale close to

Spring Verhically
Department of Physics. The doctrin College - 682002

Stand

and set

Vertically

weightthen 118 time perilod Effective massa PROCEDURE by considering the shift corresponding to successive spring 18, Static method m - mass at the weight hanging || |11 T - Time period of Oscillation dynamic Md - Effective dynamic mass of the spring Kd - spring constant in the dynamic condition. 10 = 1 Kd = 41 8 Spring m+Md (mtmd) two methods can be eliminated <u>S</u> イオ m has an exective mass Md

	disk
	arthur singularin
THE STREET OF THE STREET OF THE STREET	100
24	
And and the second of	1
in percentage = 2.85%	EXMON
rom graph, kd = 1	Constant
from calculation, kd = 178.01 n/m	Spring Constant
method	By dynamic me
percentage = 17%	Eauda
m graph, ks = 1	
from calculation, kg = 222.95 N/m	Constant
	By static method
0.7	
	RESULT

it undergoes multiple reflections

glass plates

difference between the two reflected waves

of the wavelength (n2). This results in bright

Constructive

inter forence

bright and

dark fringes.

inter Ference

pattern, of

between the

occurs when the path

multiple

difference is an

Destructive

inter ference

ocurs when the

path

half wavelength

EXPERIMENT 4 DATE - 6/2/2004
COMPARISON OF THICKNESS OF THIN
SHEETS BY AIR WEDGE
AIM
ond compare with each other.
APPARATUS REGUIRED
Air wedge, Travelling microscape, Sodium vapour lamp, Reading lone thin shorts plane alax plate.
THEORY
when a piece of thin paper is introduced between
pped between the tu
1110

08868	OBSERVATIONS AND	ND CALCULATION	2	PASEBBARIAL F
To de	To determine the	e thickness of sheet 1	of sheet 1	MORESTSON
11	5.8x10 ² m	-170 = 0.001 cm	EA YIMO	214348
	Mich	Microscope reading Total reading	Total reading	width of 10 bands
Labin	MSR	VSR	MSR+ (VSRXLC)	0.77
	Cm	cm	CM	cm.
ь	7.05	P	ㅋ.059	The Rest Hilling State of the
4	1.05	3	F-063	the property of
6	9 +	는 당	7.140	
%	<u>2</u>	25	구·IŦ5	TOBSETTS SERVICE
<u></u>	月.20	0	7-200	
2	7-20	0. 3.2	€ 232	0.173
41	7-25		구-251	881.0
16	98.t	12	7.262	0.122
8	7-30	29 .	子.329	1,7 TO 501 1151.0
20	7.35	2	₹-352	100
Mean	Mean width of	10 bands =	10 bands = 0.1578 x 102 m	CHO Brangle Fin
Band	Bandwidth 8 =	= Total width of	of 10 bands	= 0.1578×10 ² _0.1578×1000
$\beta = 0$.	β = 0.1578 x10 ³ m	10 2.2	BASSI AT STATE	TO THOM STORY
ک ا ک	= 589x109m	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	The Track	THE PRINCE FEET
1=5	= 5.8 x10 m		STATE OF THE STATE	The thirties of the
Thickn	Thickness of st	sheet 1, ti =	JL = 589x11	589×109× 5.8×102
1.0	The Shirt	Bill (SH	थेष्ठ ३४०	2 x 0 · 1578 x 103
	7 11 2	Selection of the select	= 1.082	1.0824 XIQH M . 1505111-
	hard simes	That so sto	THE CANONE	Je spill singe

07 80
-ton constructive interference at point oc.
$t = \infty \text{ fano}$ (5)
The thickness of the air wedge at a distance 'x' from the edge is,
t = L tano
$tan\theta = t$
for an air wedge of angle 'B' as in the figure,
$2t = (n + \frac{1}{2}) \lambda$, $n = 0,1,2,3$ (3)
For destructive interference,
$2t = n\lambda$, $n = 0,1,2,3$. (2)
for constructive interference,
point.
Δ=2t 0
The path difference between the two reflected rays is
entil A . Ind results in dark tranges.

 $\beta = 0.1616 \times 10^{9} \text{ m}$ $\lambda = 589 \times 10^{9} \text{ m}$ $L = 6.2 \times 10^{2} \text{ m}$ Throkness of sheet 2, t2 = AL Onder Band width, $\beta = 70101$ width of 10 bands = 0.1616x102 Mean width To determine the thickness Of L=6.2 x10 m Le=0.001cm 7.20 7.20 7.20 7:10 7.05 7.05 7.05 Microscope reding 400 MSR 9 5 VSR bands 6 Total reading MSR+(USRXLC) = 0.1616 x10 m 7.143 7.140 7.218 7.218 1.010 240-t 056-9 7.067 7.210 sheet 2 = 1.13 x10 m 589 x 10 x 6.2 x 10 2×0.1616×10 10 width of 10 bands 0.143 0-130 0-208 0.190 CM = 0.1616x10m

= (n+1) /L _ n /L &= /AL &= /AL	The fringe width are band width 'b' hence pattern is the distance between bright are dark fringes, $\beta = \infty_{n+1} - \infty_n$	$ \begin{array}{ccc} 2 & \chi_{11} & \Theta & = 11 & \lambda \\ 2 & \chi_{11} & E & = 11 & \lambda \\ 2 & \chi_{11} & E & = 11 & \lambda \\ 4 & \chi_{11} & \chi_{12} & \chi_{13} & \chi_{14} & \chi_{14} \\ 4 & \chi_{11} & \chi_{12} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{11} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{11} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{11} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{11} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 4 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ 5 & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} & \chi_{14} \\ $	And using the geometry of the wedge. Then equation (3) becomes.	when the angle or is very very small	For or corresponding to the 1th Pringe 2 or band = n2
(q)	in the intenter	3		d , Then	je , (F)

whose thickness is to be the glass placed at one end there is placed at one end the is placed at one end the other band so that it contact. Measure the length (1) of alruedge. In side the wooden box inclined glass plate inclined glass plate on the air wedge. In side the wooden box inclined glass plate on the air wedge. Inclined glass plate and alruedge band clearly. How the coal alruedge inclined glass plate and alruedge the wooden. Cornes ponding to 20 bright or e travelling microscope.	procedure of thin sheet, whose this measured between two glass air wedge. The thin sheet is plass or near to the end. The other of the line of white other by a subber be becomes the line of white other by a subber be becomes the line of white other by a subber be becomes the line of white other by a subber be to he one the sound the mono chramatic light such that the hormally on the such that the reflected light such that the travelling microscope of vertically above the inclined of the wires exactly. 6- Measure the distance whespondically above the distance travelling don't he travelling the travelling don't few wires exactly.
---	--

y,

(b) is raticulated by dividing the measured distance of the number of fornacs. The measurements are neconded in a suitable table 8- Using the fermula, 1 = AL AB The thickness of sheet 1, b1 = 1.0824x10 m The thickness of sheet 3, b2 = 1.13x10 m The thickness of sheet 3, b2 = 1.13x10 m The thickness of sheet 3, b2 = 1.13x10 m The thickness of sheet 3, b3 = 1.13x10 m The thickness of sheet 3, b4 = 1.13x10 m The thickness of sheet 3, b5 = 1.13x10 m The thickness of sheet 3, b4 = 1.13x10 m The thickness of sheet 3, b5 = 1.13x10 m The thickness of sheet 3, b4 = 1.13x10 m The thickness of sheet 3, b5 = 1.13x10 m The thickness of sheet 3, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 = 1.13x10 m The thickness of sheet 4, b4 =		,		·		
wholl of the Amages deduced and the list calculated by dividing the measured the new measured neconded in a suitable table using the sermula, the hickness of arrived the thickness of sheet 1, the 1.0824x104 m thickness of sheet 3, the 1.13x104 m						
wholy of the Amages deduced and the list calculated by dividing the measured the new measurement of particles and particles of all the heasurement of the thickness of sheet 1, the loss of the shee						
which of the Annaes acaused and the less calculated by dividing the measured the neasured the neasured accorded in a suitable table using the Remaids, t = AL ab the thickness of sheet 1, b ₁ = 1.0824x10 ⁴ m thickness of sheet 3, b ₂ = 1.13x10 ⁴ m					N 10-	1
which of the Annaes acoused and the less alcoholed by dividing the measured recorded in a suitable table using the secondary. The measurement he huckness of sheet 1, b1 = 1.0824x104 m Thickness of sheet 1, b1 = 1.0824x104 m Thickness of sheet 3, b2 = 1.13x104 m	-10	4				
which of the Annaes de duced and the less at measured the number of fornaes. The measurement neconded in a suitable table using the fermula, The huckness of arrivedge is defermined thickness of sheet 1, ti = 1.08.24x104 m Thickness of sheet 1, ti = 1.08.24x104 m		v!		1.		
which of the Annaes de duced and the he h		i.				,
which of the Annaes de ducie and the he h						
within of the temper actual and the his rationaled by dividing the measured the newworded in a suitable table using the Remmula, The hickness of arrivedge is defermined thickness of sheet 1, $\xi_1 = 1.0824 \times 10^4$ m Thickness of sheet 1, $\xi_2 = 1.13 \times 10^4$ m Thickness of sheet 1, $\xi_3 = 1.13 \times 10^4$ m						
the number of formas actual and the his rationaled by dividing the measured the number of formas. The measurement of the hickness of sheet 1, t ₁ = 1.0824x10 ⁴ m thickness of sheet 1, t ₂ = 1.13x10 ⁴ m			***		(
the number of princes. The measured the number of princes. The measured recorded in a suitable table using the fermula, the hickness of sheet 1, bi = 1.0824x104 m thickness of sheet 1, bi = 1.13x104 m	in a second	-	-	2/2/	1	
the number of formas. The measured the necessary of formas. The measurement of formas. The measurement of formas. The measurement of formas. The measurement of the formal of the formal of the formal of the formas of arrived for the formas of sheet 1, the probleman of the shee		N. C. Mitter		72/24	P.S	
the number of formas. The measured the number of formas. The measurement of formas. The measurement of formas. The measurement of formas. The measurement of the formal of the formas of arrived the first defermined the thickness of sheet 1, ti = 1.0824x104 m. Thickness of sheet 1, ti = 1.0824x104 m.		1446-		7		_
the number of formas. The measured the new ded in a suitable table using the formula, Using the formula, t = 7L Ap the thickness of sheet 1, t = 1.0824x10 m thickness of sheet 3, t = 1.13x10 m Thickness of sheet 3, t = 1.13x10 m		1	1-		\	
His rationaled by dividing the measured the number of pringes. The measurement necessary wedge. The measurement of pringes to the measurement of the fermula, The hickness of sheet 1, ti = 1.0824x10 m measurement of the sheet 1, ti = 1.13x10 m			9			E ST
the number of formas. The measured recorded in a suitable table using the kermula, the hickness of sheet 1, ti = 1.0824x104 m thickness of sheet 2, ti = 1.13x104 m		G				
the number of sheet 1, $t_1 = 1.0824 \times 10^4$ Thickness of sheet 1, $t_2 = 1.13 \times 10^4$ m Thickness of sheet 1, $t_3 = 1.13 \times 10^4$ m Thickness of sheet 1, $t_4 = 1.13 \times 10^4$ m		nl:			- 1	=
the number of formals. The measured recorded in a suitable table using the kermula, the hickness of sheet 1, ti = 1.0824x104	d Warris	-	2. T.	Shept		
the number of formas. The measured recorded in a suitable table using the kermula, the hickness of airwedge is determined the thickness of airwedge is determined	XIO, W	1	1, 6	sheet		
the number of formass. The measured recorded in a suitable table wing the measurement of the lemmina, The humber of formass. The measurement recorded in a suitable table with the formula, The thickness of arrivedge is determined						- 4
the number of formass. The measured recorded in a suitable table wing the formula, the heasurement of the formula, the hickness of arrived is defermined						
His rationaled by dividing the measured the number of fornas. The measurement neconded in a suitable table using the remained,	nined.	dekenr		of ary	ckness	- 1
the number of fornass. The measurements recorded in a suitable table Using the fermula,	2000			λβ		
the number of fornass. The measurement of fornass. The measurement of fornass. The measurement of fornass.		1	21671	yr,	1.7	Dans
the number of formass. The measuremen			able	Suitable	N A	1
to colorable by dividing the page incol	ements are	measus	act. The	A PMM	F	
	, 0	and	ae du co a	1 mges	- C	N N

polorized

polanizer.

on the

Orientation

e transmitted light through analysed and all between the axes of polarized and to verily Malus law. PARATUS REQUIRED I drade laser, a polarized analyzer pair, photo bector output measuring unit (wh) and an enter output measuring unit (wh) and an enter output measuring unit (wh) and an enter of by a bulb is an ardinary light known to be un-polarized. In an un polarised ond magnetic field vectors vibrate extraction and magnetic field vectors vibrate as perspendicular to the direction of prairies.	MALUS LAW - VERIFICATION Metermine the relation ship between the
REQUIRED aser, a polarizer analyzer pair, photo output measuring unit (un) and an output measuring un) and	determine the relationship between the intensity transmitted light through analyses and condition to verify Malus law.
laser, a polarizer analyzer pair, photo output measuring unit (wh) and an output measuring unit (wh) and an inted by a bulb is an ordinary light and be un-polarized. In an un polarized of magnetic field vectors Vibrate directions perspendicular to each of directions perspendicular to each of the direction at prairies.	
nt coming from the Sun candle light, ar mitted by a bulb is an ordinary light as un to be un-polarized. In an un polarized on a magnetic field vectors vibrate in directions perpendicular to each other per pendicular to each other per pendicular to the each other pendicul	output measuring unit (uA) and
nt coming from the Sun candle light, ar mitted by a bulb is an ordinary light as un to be un-polarized. In an un polarized in and magnetic field vectors vibrate in directions perpendicular to each other per pendicular to the each other pendicular to the each	THEORY.
un to be un-polarized. In an un polarized and magnetic field vectors Vibrate in directions perspendicular to each other perspendicular to the direction of propagat	light coming from the Sun Candle lie
ex pendicular to the direction of propagat	and magnetic field vectors vibrate in
	expendicular to the direction of propagat

0.5 0.3 0.41 0.25 0.12 0.12 0.13 0 0 0 0.03 0 0.12	0.03	-0.34	- Y - W	
	0.03			. 10
	0	-0-17	100	<u>₹</u> ₹
		U	10	
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.03	FILE	0 8	US)
3 5	~	45.0	8 2	5 8
3 5		9 6	₩ 8	25
		ο ,	3	8
		13.0	50	110
Contraction of the last	98.0	0.44	40	[00
1 1 2 1	0.76	18.0	30	90
88.0	98.0	140	20	8
0.96	0.96	86.0	10	벙
₹08.1¢	12	1>	0	8
0.9 0.96	96.0	80.0	-10	প্ত
0.88:0 11.8.0	0.88	0.94	-00	40
0.76	61.0	18.0	-30	30
	0.60	0.77	45	20
0.312.19 CO.7418.05	0.41	0.64	-50	0
0.1 0.25	0.25	9.5	-60	0.
(MA) (MA)			[degress]	(machan)
W.1.		4		ñ.
Texpt		1.00	員	e,
= Intousity = Iman x custo	(m) =	-010	axes of palamized	Krzhlomo
			क्र	Angle of
100				
it, Imax = 14A	n curroent	Maximum		ĺ
- No = 80 /	19. 1110001	ument	analyzed when current to movement	Angle Of
	ماسم	-	THE CHAPTER	Coordinate

Ithus = Imax. custo	er - Angle between axis of polarizer and andwicer.	156	where, It - Intensity of light transmitted through	$T_{+} = A_{+}^{2} = A_{0}^{2} (\omega)^{2} \theta = T_{0} (\omega)^{2} \theta$	As, inknsity & (amplitude)2	At = 40 Wig	n inclined at an	_	I or cos ² o	polarized light is incident on the analyzer, the intensity (I) of the light transmitted by the analyzer of analyzer and the polarizer.
---------------------	--	-----	--	---	-----------------------------	-------------	------------------	---	-------------------------	--

1— set up the lacer, photodode, the palacizer and analyse as shown in kgune. Align the palacizer and analyse so that the palacizer and conducer so that the palacizer and conducer so that the palacizer and conducer until you observe a maximum unvent the analyse until you observe a maximum in transmission. Note down maximum unvent the find the maximum intensity, plat a graph between Texp and angle as which is the analyzer in between Texp and obtain the analyzer in the analyzer and obtain the intensity texp using the phate delector. 3—Ratak the analyzer in be maximum unvent. 4— For each angle of measure the transmitted light intensity the analyzer. 5—By subtracting of, the analyzer. 6—Theoretical value of intensity can be find using the palacizer the axes of palacizer and analyzer. 6—Theoretical value of intensity can be find using this expression 7— Yenifying malus law by plotting graph between the axes of texpt in y axis and taxe in xavic of texpt vs to 120. Texpt in y axis and taxe in xavic of texpt vs to 120. Texpt in y axis and taxe in xavic of texpt vs that it texpt in y axis and taxe in xavic.

								C			Toxo Us Pr Jano Us (11.520 has been pla)		linit slope indicating the connectnus of malu's	\$10 pe = 1.06 ≈ 4	ulaked.	in araph Tour	Malus law vertified from the experimental data	RESULT	
										1 1	en plotted.	- 1	+ malu's law.	A CONTRACTOR OF THE PERSON OF	MIIIT 6.	5	tal data.		

Half shade on Bigwards dond.

S L N. Polarimeter lube N2.

Light Polariater Polarimeter Analyzer Eye piece.

AIM AIM AIM AIM AIM AIM AIM AIM		学生型名 到的		
	polanimeky consists of two Nicols termined the substance for which the solution tabe. I analyzen. These can be notated about and the substance for which the be determined is placed in a tube. I the half shade plate is placed be applied on the solution tabe. I the polarizer is a cricular plate optic axis, and is thick enough. If is made as glass, matched in thicker because the solution of the solution.	REQUIRED REQUIRED LIGHT (Sodium lamp for half-shert), Orlass beaker, water, Sugar	half shade polari melen, Rotation (6) ve ntration (6) (4) ve to be drawn and the rotation of sugar solution and the standard value.	PTICAL ACTIVITY ROTATION MET

188.5 O 75 195.8 7-3 75 200.1 11.6 58 206.4 18.2 75.8 215.2 26.7 66.75	h ग	206	0.15
18.2	'n	206	0.15
11·6			
0 4 3	Į.	200	0.1
188.5	80	195	0.05
	Sī	188	0
0 (8 /m N) -1 (dm)			
msR+(vsRxLC) in degree (6) \(\alpha = \frac{\theta}{\theta} \)	VSR	MSR	ghat (C)
ling in degree	polanimeter reac	polami	concentration.

riough it has the same intensity as the quartz. As a result, a plane beams emerge, one from glass half it he ams emerge, one from glass half it he ams one aligned with the main analyzer, both halves of the field through the eyeplece will a ppear has sugar solution, which is specific rotation in a rotate the plane of how much a rotate the plane of how much a father is a measure of how much a rotate the lights direction changes through a certain amount of the solution. If the light two solution is through a certain amount of the solution. If the light two solution is the light two solution is the light and a positive specific rotation; the loft, it has a hegative specific rotation; the leaf leaf of the solution (length of the path length of the solution (length of the land of the solution

Standard value of specific rotation of sucrose = 66.5 (Qua) (dm)

From percentage = $66.5 - 68.38 \times 100$

66.5

= 2.82%

efully fill the sample the salution. Ensure the easurement. The sample tube on a sample tube on the sample tube.	The light will pass through the solution tube. 3 - Fill the sample tube with distilled water, and place the tube in the polari meter and set the instruction observed later is only due to the sugar solution. 4 - Prepare a sugar solution of known concentration by dissolving a known mass of sugar in a known to make a file sugar in a make a file sugar in a milliters of water to make a file solution.	the power of the party of the power of the party of the p	rene m — Mass of the solute in gran V — volume of the solution in ecific rotation & can be defined as
tube with the prepare lese are no air bubble, accuracy of the in the polarimeter. angle of rotation of the angle of rotation of the	n the solution tube. In the solution tube. In distilled water, and place meter and set the instruction. I on sures that any rotation was to thoe sugar solution. I of known funcintation of known and a known of sugar in a known on this we are dissolving in a milliters of water	at a specific conuntration polarimeter instrument. polarimeter instrument.	gram in milliliter as the angle britally active

Specific rotation $\alpha = \frac{\theta}{1c}$ $= \frac{1}{L} \frac{d\theta}{dc}$ $= \frac{1}{A} \times 130 = 65 (g/m)^{-1} (dm)^{-1}$ From graph $\frac{du}{dx} = \frac{d\theta}{dc} = \frac{16.6 - 14}{0.05 - 0.05} = 130$

9-Repeat the experiment by filling 10%, 15% an of solution in sample tube by dissolving and 20 g of sugar in 12 100 ml of water 10— Compase the value of specific rotation was solution related after passing through the sugar this is the RESULT 3- using the formula & = O, calculate the The specific notation of sugar solution from graph The specific rotation of sugar solution $\alpha = 68.38 \text{ g/me} / \text{dw}$ it's standard value Specific rotation of the sugar solution. angle by which the plane of polanized Enmon pertuntage value of specific relation with Emor perantage 25 10%, 15% and 20% $\alpha = 65^{\circ} (g/m)^{\circ} (dm)^{\circ}$ = 0.82% = 2.25 109,169

Department of Physica, The Cochin College - 682002

Ennor percentage = $\frac{665-65}{66.5} \times 100$ = $\frac{2.25\%}{6}$

1 = 10 e -1
1 49
ode equation as
18 18
the band gap energy through
chion band.
The bandgap energy of a semiconductor is a fundamental
THEORY
Energy band gap kit
APPARATUS REQUIRED
To determine bandgap energy of silicun diode.
AIM
BANDGAP - SEMICONDUCTOR DIODE
EXPERIMENT 7 DATE - 7 15 2024

Department of Physics, The Cochin College - 682002

postulo, repriz to notice a salitage suit

OBSERVATIONS AND CALCULATION T = 0.150 m/s (kapt constant) $T = 0.150 \text{ m/s$

emperatus	lemperature	1	Vollage (V)	V)	Eg (ev)	(N
C	۶	Healing	caoling	Average	Expérimental Thursetica	Thurselical
35	308	0.435	C-417	0.426	1.9.52	11199
40	313	914.0	0.401	0.410		1.151
45	318	0.40	0.384	0.392	1.245	1110
50	303	0.380	0.364	0.379	1.988	
55	328	0.358	0.356	0.354	1.994	= :
60	333	0.334	0.340	01.0.3970//	1.230	
65	338	0.315	0.330	: 0.13221	1.998	1.11.7
70	343	0.297	0.815	0.306	1.996	2
45	348	0.239	0.299	0.289	1,999	112
1 08	363	0.265	0.269	0.267	1.911	110
85	358	0.248	0.452	0.250	1.910	1 100
90	363	0.232	0.247	0.239	G	1.108
	17.1		1011			

Mean Experimental value = 1.230 ev

Department of Physics, The Cochin College - 682002

An Indirect logar logar	Then equation () can be reduced to, T = To e The reverse saturation current is usually too small &	Significantly largest than the thermal voltage ret, Significantly largest than the thermal voltage ret, Thun, asher >> 1	ode current se saturation current se saturation current se saturation current ge of the electron = 1.602 xiō''9 c ted voltage across the diode lity factor (typically between 1 and des) smann constant = 8.61xiō''9 ev/k. alute temperature in Kelvin
-------------------------	--	--	---

 $\frac{dy}{dx} = \frac{dy}{dt} = \frac{0.346 - 0.33}{335 - 330} = \frac{3.2 \times 10^3 \text{ N/k}}{3.5 \times 330}$

The state of

SIG and defermine the band gap. revence range, the relation homax take all, is almost linear. This proportionality that ton8 MINOR expnessed denocates as never se experiment ine it's slope may be experimentally, within a 18 0180 study of the 8,11 of 3 M = 0To = KTm & mki 11 rm perature em pera luxe intersects the constant that depends 40 Empirical factor, often clase to 3 gometry of the diode saturation Current To 二 Important hand electoric under constant current and we can for the AINI tem penatux N pana gap. between Silicun temperature 2 solved properties. It has been observed Kelvin because it is directly propon (unnent room temperature (300 K) incrases. Here we are doing tm peratux amen Stauckuse 4 ઢ On in kelvin Department of Physics, The Cochin College - 682002 III ter a the Ian take Standard can be used to 4mpenature axi8 04 semiundu material and drode at Io Por slicen $\mathbf{\varepsilon}$ am

Band gap energy at 308 k

Theoretical value $E_{g} = 1.17 - 4.73 \times 10^{4} T^{2}$ $= 1.17 - 4.73 \times 10^{4} (308)^{2}$ = 1.122 eVEvopoimontal ... 1

Experimental value $E_{g} = v - T dv - m^{n} k T$ $= 0.426 + [308 \times 3.2 \times 10^{-3}] - [3 \times 2 \times 1.38 \times 10^{23} \times 10^{-3}]$ = 1.4116 - 0.15919 = 1.252 ev = 1.252 ev $= 1.252 - 1.122 \times 100$

3

18 The *mperature we have the diede forward current I, given by

Substitute for To from eg (4) I = KTM 0 "KT 0 WKT

= KTM 0 Lake mer

= KTM Q WKT

ake logantim.

At constant current, differentiale the above with respect T

= 0+m + d 9(V-Eg)

multiply with netz we get, 0 = 0+m + 4 dv - 9(v-Eg)

 $= \frac{\eta_{K} T^{2} m}{q} + T dV - (V - Eg)$

Mean Experimental value, Eq = 1.115 eV

Nean Experimental value, Eq = 1.230 eV

Ernor perentage = 1.23-1.115 x100

1.115

at which the bandgap energy changes with Emperative. Where, band gap energy using the PROCEDURE The junction gradient cuesticient & - Jake mater supply. - cannect the The Energy band gap kit It can be used as mater both to study temperates Eg(6) – band gap énergy at absolute zona kmpandax Eg (7) - The band gap energy at temperative T $Eq(T) = Eq(0) - \alpha T^2$ 日(0) ~ 1.17 material speake unstant. 1.17 - 4.73 XIO T2 ~ 636 K 4.73×104 ev/x silicon diade in neverse blas using T+636 varshini equation: 8 heat it in burner. dependence of the for sillicent is (6)

The first of the f

18/7/Q4	Mean throsetical value Eq = 1.115eV Mean Experimental value Eq = 1.230 eV Error percentage = 19.3%	The bandgap energies are calculated at different temperatures and experimental values are compared with theoretical value	mental value of bands for each temperature of experimental value of value obtained by the	when bath the vallage of the vallage of vallage of vallage of variation of variatio
---------	--	---	---	--

0:

	Carried Control		
X-ray diffraction is a power feet technique used to study—the structure of crystalline materials. When study—the structure of crystalline sample they are x rays interact with a crystalline sample they are x rays interact with a crystalline sample they are x rays and lattice as scattering in the figure. The scattering of cours due to scattering phenomenan products constructive interference in observed on a detector. These diffraction pattern observed on a detector. These diffraction pattern observed on a detector. These diffraction pattern of the fundamental principle governing x-ray the chartern of the incident x-ray and lattice parameters. Structure—the fundamental principle governing x-ray the first incidence and of the common of t	XAD dala OF aluminium powdey Sample THEORY	Using x-nay differentian data to calculate lattice parameter of some common material Caluminium pawdut) with cubic stoucture.	EXPERIMENT 8 XRD-CRYSTAL STRUCTURE DETERMINATION

20° degxe	degree	Sino	Sin ² O	Sin ² On Sin ² O1	h\$k\$l²	hkl	dhklasino (m)	a=dnkaltaka xioto(m)
38.497	19.2485	0.32966	0.10867	1	3	III	2.297x10	4:0502
44.749	22.3745	0.38065	0.14489	1.33333	4	200	1. 989 x10 10	3.979
55.115	32.5575	0.53814	0.28959	2.66485	8	2 20	1.407×10	3.9808
18.239	39.1195	0.63093	40868.0	3.66310	- 11	311	1.200210	3,9814
2.447	41.2235	0.65899	0.43426	3.99613	12	222	1.1493x1010	3.9814
- E		amelen a= N powden				h Lidden		
		M. Possible	4.041	HEDEN TOPS CH	SMEM 1.8	Check British	E L	XBD-OB!

$$\frac{161}{169} = \frac{0.10867}{0.10867} = 1 = \frac{9}{3}$$

$$\frac{16^{2}}{16^{2}} = \frac{1.5418 \times 10^{40}}{0.00867} = 2.8384 \times 10^{40} \text{ m}$$

$$\frac{161}{0.00867} = \frac{1.5418 \times 10^{40}}{0.00866} = 2.8384 \times 10^{40} \text{ m}$$

$$= \frac{113}{25006} \sqrt{\frac{1}{12}} = \frac{1.5148 \times 10^{10}}{2 \times 0.38065} \sqrt{4} = \frac{3.979 \times 10^{10}}{2.979 \times 10^{10}}$$

athice

1 = 3.9945 X100 m parameter of

At powder with

(ubic stauckerse

$$0 = \frac{1.5148\times10^{10} \text{ Ju}}{2\times0.65093} = \frac{3.9814\times10^{10} \text{ m}}{2.9814\times10^{10}}$$

$$\frac{\ln^2 \theta_{F}}{\sin^2 \theta_{I}} = 369613 = \frac{12}{3}$$
, $\ln^2 2 \frac{1}{3}$, $\ln^2 2 \frac{$

Department of Physics, The Cochun College - 682002

SHALE &		15m (2) , (d
Substitute for donce from (3), we get	a = dippe y 1272412	lathic parameter:
a , we get	412.	
	(H)	

RESULT	appropri	7- Find the	2 - Note down 20 3 - determine the	1 - I denhky	PROCEDURE	10.500	fi	Substitute for		rom (2), (1)
K G	appropriate quantit (4) usos	臣臣	woke down 20 value and determine the milley indices	de de la		0 = 118		duce	0 = diport	athic parameter:
	1 (A) 04(D)	planay distance dake	The find t	and clear		6 VYXXVV	1.2.9.	from (3), we get	17524 N 11252 CZ	ह्य:
	din HE,	of san	and note down	peak fr		1 · E	la)	get		
		of sample wing	note down value	from the			(F)		H	1 4

OBSERVATION AND CALCULATIONS Sin²O1 sun20 httle [hke] SINO drie Ano 20 0 a = dnke Jhzkzte2 degree degree x loom xIOOm 1 0.0599 0.2449 3 111 3.0926 28-362 14.181 5.356 2,6627 5.363 8 1.8963 0.3994 0.1595 47.090 220 23.545 0.4682 0.2192 3.6594 11 311 1.6176 87.924 5.365 55.849 400 0.3/86 16 5.366 68.739 34.369 0.5645 5.3188 1.3417 5-368 0.3782 1.2315 75.914 19 37.957 0.6150 6.3138 331 20 78.218 5.369 6.6427 1-2006 20 39.109 0.6308 0.3979

Mean lattice parlameter a= 5.364500 m

The lattice postameter of Cufz unit Cell, $a = 5.451 \text{ Å} = 5.451 \text{ xio}^{6} \text{ m}$

			2 4 4 4 4 4 4	
may are incident an a constant that an anchording to braggle law: archording to braggle law: n - n - 2d sin - 1 hithere, n - Order of diffraction, usually equal to one n - nonelength of the x-rays d - interplanar spacing e - angle of incidence. when x-rays hit the coustal planes at an angle the waves scattered from successive planes equals an integer multiple of the wavelength. This result in a an integer multiple of the wavelength.	pawerful technique us	XRD data Of Cats Constalling Cample	To determine lattice parameter of a constalline sample (CaF2) using XRD data	XRD-LATTICE PARAIMETER MEASUREMENTS

(a) $\frac{\sin^2 \theta_3}{\sin^2 \theta_1} = 3.6594 = \frac{11}{3}$, $h^2 + k^2 + k^2 = 11$ $\frac{\sin^2 \theta_1}{\sin^2 \theta_1} = 3.6594 = \frac{11}{3}$, $h^2 + k^2 + k^2 = 10$ $\frac{\sin^2 \theta_1}{\sin^2 \theta_1} = 5.9188 = \frac{16}{3} + h^2 + k^2 + k^2 = 16$ $\frac{\sin^2 \theta_1}{\sin^2 \theta_1} = 5.9188 = \frac{16}{3} + h^2 + k^2 + k^2 = 16$ $\frac{\sin^2 \theta_1}{\sin^2 \theta_1} = \frac{1.5148 \times 10^6}{22 \times 0.5645} = \frac{1.3417 \times 10^6}{1.5417 \times 10^6}$ m $\frac{3}{3}$ $\frac{1}{3}$ $\frac{1$ (W) **©** (1) Simon = 1 = 3, 12+12+2=3 $\frac{\sin^2 \theta_1}{\sin^2 \theta_1} = 2.6627 = \frac{8}{8}, h^2 + k^2 + k^2 = 8$ dnke = 1.5148×100 = 1.8963×100 m $d_{hKQ} = \frac{n \cdot 9}{8 \sin \theta} = \frac{1.51 \cdot 48 \times 10^{10}}{8 \times 0.2449} = \frac{3.0926 \times 10^{-10}}{8.0926 \times 10^{-10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.51 \cdot 48 \times 10^{10}}{1.51 \cdot 48 \times 10^{10}} = \frac{1.5$ a = dnke / h2x2+e2 = 3.8926x10 J 3 = 5.356x10 m $0 = 1.8963 \times 10^{10} \sqrt{8} = 5.363 \times 10^{10}$ MINGWENT 3

related diff-raction peak at angle Bragg's PROCEDURE - Taentily sharp and — Find interplanati Mont Deleumine the cubic onustal, the interplanar distance directis Thre = n A Q = lattice parameter at = dnse V harace された n9 1 nothere2 a sin O diffraction MILLEY constal ane distance duce clean peak from the given unditus 209 distance 新 0 desembed by Miller indices and the an 20 using Braggly law notedown value be determined Milley India

(

 $a = 1.8417 \times 10^{10} \text{ Jib} = 6.866 \times 10^{10} \text{ m}$

		 \prod				Ş .	The R	RESULT	Sn
					-2	-	xRD of found, o		ing api
-					2	5			using appropriate, equation
	2		100			17704	= 5.36.45 x10 m		eguaho
									No.
							and		-
							lathice	1454	1
							e pasiametes		

where, E 18 the strain E 18 the strain BD = KA + LE LAND BD = KA + LE LAND D COSO BD = KA + LE LAND BD = KA + LE LAND D COSO BD = KA + LE LAND BD = KA + LE LAND D COSO BD = KA + LE LAND BD = KA + LE LAND D COSO BD = KA + LE LAND BD = KA + LE LAND D COSO BD = KA + LE LAND B	b = k? By we By - Broadening due to constallite size. K - Shape factor or schurrer unstant typically 0.9. R - Wavelength 0.4- x-ray = 1.5-418 xi6 m D - Constallite size D - Bragg angle in radian By = 4 & tange Be = 4 & tange By =

f.

PROCEDURE 1 - Notedown 20 values and FWHM values of the Sample given. 2 - Convert 20 - 10 0 and degrees to radian. 3 - Convert FWHM (8) From degrees to radian. 4 - Calculate 8 cust and 4 since. 5 - Plot 8 cust and 4 since. 5 - Plot 8 cust and 6 a straight line to the data paints using saftware and calculate the line to a straight line to a straight line to the data paints using saftware and calculate the constability size (D) using equation (a)	where
--	-------

Slape = $\frac{100}{100}$ = $\frac{10$

1 PLOTTING PROCEDURE IN ORIGINABLE 4 - Triden the menu or options given in the 3 - High-light the inlumns of data by soleening 1-Import your data 6- with the 5- This will Size and The XRD RESULT 8 - Originlab will the x axis and Record the athre strain (2) lathre strain plat and display the fitting include the slope (m) and Constallite Size lab select the your data is in two colums: 481ng 4,8 (wid Of given sample is lathice strain obtained scatten place active go to Analy create a scorter plat with slape of E = -0.0012 .Prom > Linear At. > Open dialogue 2-219 XIO'8 the. scalled option for Excel file on lextfile into Affed line to the line, which gives the analysed. The coystallike intercept (c) means lattice is under tensile If we have a positive slope, it ndicates compressive strair payameters, which Analysis menu. HSIM & CM Scatter

Department of Physics, The Cochin College - 6820

F.A

USING CHATANTS AND CALCULATION, CONVERSION

EXPERIMENT 11

BAND

ON DIRECT OR INDIRECT USING TAUG

II CHI

DATE - 13/5/24

RELATION

ABSORPT

ON SPEC

AM

To determine the

the band gap energy of a making with absorption data with the lauc plot method

of a makinal wing

UV-VISIBLE

To Convert Jm to ev nm.

= 1840 .ev. mm : 34.11 ... 13 ... 156 ... 1m. Man hay and

The boundary of Marie 1930)

to the state topics of the solution of

Sadright part of the same of

ne pre senting

Chrish conduction.

difference by

between the valence

energy

For somi conductors, the

energy transitions within the

Politice and

 $h = 6.626 \times 10^{34} \text{ Js}$ $C = 3 \times 10^{8} \text{ m/s}$ $17 = 6.242 \times 10^{18} \text{ eV}$ $1m = 10^{9} \text{ nm}$ $h = \frac{hc}{h}$ $h = \frac{hc}{h}$ $h = 6.626 \times 10^{-34} \text{ Js} \times 3 \times 10^{8} \text{ m/s} = 1.986 \times 10^{-26} \text{ Jm}$

REQUIRMENTS

ou-visible absorption data of Mgo

THEORY

absorption or reflection spectrascapy. The intensity measured, usually liberms of teransmittance or tolorband UV-Visible malenals absorb light at specific wavelengths correspassing through on reflected by a sample is spect-nascapy measures how much intensity of

Department of Physics, The Cochin College - 682002

The policy of the property of the property of the policy o			Apsorphon well Enverged Apsorphon well Enverged Apsorphon well Enverged Approximation	
MEGNITURY THE SILVER T	REGURANTALE OF THE OF T	VIW KETULKATI L. UNIAT 1.		

		hkkkl.l	- 12 12 12 12 12 12 12 12 12 12 12 12 12
where, \[\alpha - \text{absorbance}. \\ \text{hg} - \text{phoshon energy} \\ \text{Eq} - \text{bandgap energy} \\ \text{Eq} - \text{direct fransitions of the making energy} \\ \text{Apolite} \\ \text{Eq} - Apolite for analytions of the band of the phosis. The coord college - season app can be determined from the prosess. The coord college - season app can be determined from the prosession of the coord college - season app can be determined from the prosession college - season app can be determined.	For alrect transitions: $(\alpha h v)^2 = A (hv - Eg)$ For indirect transitions: $(\alpha hv)^2 = A (hv - Eg)$	The optical band gap of a material can be determined using it's absorbtion spectrum. The absorption welficient we hear the absorption edge is related to the photon energy he by the Tauc relation, which varies depending on whether the optical transition is direct or indirect.	In direct band gap semi unductors, the top of the valence band and the bottom of the conduction band actus at the same momentum value, allowing electrons to directly transition between these bands by absorbing or emitting a photon. For indirect bandgaps, the transition involves a change in momentum, typically requiring a phonon in addition to the photon.

Described a Elbratica Tha Cochin College - 682002
4-plat (who)1/2 versus ho to check for a linear selation, ship indicating an indirect transition selationship indicating as direct transition to the fit a straight line to the linear portion of the plat on both plots using arginlab of the intercept on the ho axis gives the band gap energy Eq.
a = Ax2303 , t=1cm 3 - Convert the wavelength & to photon energy ho wing the formula: hro = hc = 1240 (ev.nm) hroe, h- planck's unstant c - speed of light.
1- Record the absorbance (2) and corresponding wavelength (2) 2- convert the absorbance (2) to absorb to welficient a wing the semmula:
PROCEDURE

	Central maximum
Midit Sant	W.
	3 711
o schools which ket at matalia	
a diffraction partern of	ST ONE
on an obsta	2 is incident normally
aromahe laser lig	
relenath of	comparable to the
the obstacle	whose the size
_	stacle
nenomenon of	around an obstacle
	N TO THE STATE OF
	THEORY
different wine gauges, graph paper etc.	Laser, meter scale different
	-
	APPARATUS REQUIRED
Ž.	
different gauges.	6
diffraction pattern and to calculate	To defer mine the
	AIM . I Para sad
07	10 10 1 10 10 10 10 10 10 10 10 10 10 10
(11)	GAUGES
OF WIRES OF DIFFERENT	THICKNESS (
ACTION - COMPARTSON OF	LASER DIFFRAC
०भाः - ।416/24	EXPERIMENT 12

MIRE H mean diameter of wive I = Mean diameter of wive I OBSERVATIONS AND CALCULATIONS Mean diameter of whe IT VEE BILLE VICE TON - COMMENT MODINARS =V 3.64 Distance Order 2.6 2.73 1.84 2.42 84. 30 - منى wb wp wo ww a w Distance form Contral martinum 0 2 0 3,2 平 Right 45 15 cs 5 0000 w to 4 = 0.5382 x10 m = 0.3287x103m Mean XIII Q. 8973 X 103 M 12.5 12.5 12.5 12.5 2 = 92 th 4.5 62 0 mm = 0 mm 0.6944 0.2046 0.0996 0.1448 0.2518 0.1401 0.0710 0.1212 0.0440 0.1101 0.2179 0.1931 0.0965 0.1657 0.1183 0.1762 PICTOR ICE. 2.5272 SING-3 2.8920 2.4452 1.7383 3.5709 3.0211 4.3947 1.6475 3. 8030 3. 3702 1.6842 3.0752 2.1153 4969.0 Har.D 2.0647 0.5182 4.579 1.9216 S. T. WILKINS 1.2391 0.4317 0.5058 0.2996 0.5219 d-ma xio3 sino 0.55H 0.2784 0.3541 0:3244 0.3652 0.4345 0.4220 0.4233 0.3047 0.3176 0.4762

1- The later sowite is switched on and light is allowed to fall normally on the wise gauge.	PROCEDURE Om = tan ym O O O O O O O O O O O O O	tan 8m = Ym D	The angle Om can be obtained from Ym and b.	and d = m/2 (2)	d sinom = m h	d-diameter at the wise. Bi- Angle of incidence. Since the laxer beam is incident normally on the wine bi-o equation () can be reduced to:	$d(sn\theta) + sn\theta m) = m\lambda $ (1)	7000	maximum 10 the central maximum.
---	--	------------------	---	-----------------	---------------	---	---	------	---------------------------------

7-537x6 m

NIRE I

D-348m 111 | 1111

The chamber on thickness of alternation due calculated. diameter of wine I = 0.3943 xid m diameter of wine II = 0.3287 xid m diameter of wine II = 0.3287 xid m	2- Sketch the diffraction pattern obtained on a social in a graph paper 3- Measure the distance (b) from the wire gauge to the screen. 4- Determine the distance ym for different Orders of maxima from the central maximum. 5- Thus, the drameter d' is calculated wing the formula d= m9 Snom where, Om = tañ ym D RESULT
--	---

